CONCLUSION

Thus, as a result of the work were obtained the eutectic powders of the system B_4C -Ti B_2 , which were clad by aluminum and copper, from which the sintered composite materials B_4C -Ti B_2 -Al and B_4C -Ti B_2 -Cu were obtained by spark-plasma sintering.

The structure of the resulting composites is chaotically directed eutectic grains consisting of a boron carbide matrix reinforced with rod and plate inclusions of titanium diboride, mainly delineated by phases based on Al and Cu, respectively. The study of chemical and phase composition by X-ray spectral analysis and X-ray diffraction studies completely confirmed the data of the metallographic analysis.

Research micromechanical properties showed that the hardness obtained composite achieves 33,6 GPa (for composite B_4C -TiB₂-Al) and fracture toughness 5,4 MPa*m^{1/2} (for composite B_4C -TiB₂-Al). It is shown that in general integral composite microhardness corresponds computed by the rule of mixtures.

Thus, it can be concluded that the resulting composite materials B_4C -TiB₂-Al and B_4C -TiB₂-Cu are promising for further research and development of these composites as perspective wear-resistant materials.