ИССЛЕДОВАНИЕ МЕТОДОМ РЕНТГЕНОВСКОЙ ФОТОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ ЭЛЕКТРОННОЙ СТРУКТУРЫ МОНОКРИСТАЛЛОВ Tl_3PbBr_5 И $TlPb_2Br_5$

Денисюк Н.М., Бекенев В.Л., Парасюк О.В. ⁽¹⁾, Данильчук С.П. ⁽²⁾, Федорчук А.О. ⁽³⁾, <u>Хижун О.Ю.</u>

Институт проблем материаловедения им И.Н. Францевича НАН Украины, ул. Кржижановского 3, Киев, 03680, Украина

(1)Факультет неорганической и физической химии, Восточноевропейский национальный университет, пр. Свободы 13, Луцк, 43025, Украина

(2) Физический факультет, Восточноевропейский национальный университет, пр. Свободы 13, Луцк, 43025, Украина

(3) Факультет неорганической и органической химии, Львовский национальный университет ветеринарной медицины и биотехнологий, ул. Пекарская 50, Львов, 79010, Украина

Соединения Tl_3PbBr_5 и $TlPb_2Br_5$ является одними из наиболее перспективных материалов для использования в безопасных для глаз твердотельных лазерах. Существование соединений Tl_3PbBr_5 и $TlPb_2Br_5$ было впервые обнаружено при изучении системы $TlBr-PbBr_2$. Соединение $TlPb_2Br_5$ кристаллизуется в моноклинной структуре типа $NH_4Pb_2Cl_5$ (пр.гр. $P2_1/c$, а = 9.304 Å, b= 8.336 Å и c = 13.004 Å), а Tl_3PbBr_5 – в орторомбической структуре (пр.гр. $P2_12_12_1$, а = 15.397 Å, b = 9.061 Å и c = 8.537 Å).

В настоящей работе методом Бриджмена-Стокбаргера синтезированы высококачественные монокристаллы $TlPb_2Br_5$ (рис. 1) и Tl_3PbBr_5 . Их электронную структуру исследовали с помощью метода рентгеновской фотоэлектронной спектроскопии (РФС).

Рис. 1 Фотография монокристалла $TlPb_2Br_5$, используемого в $P\Phi C$ -исследованиях

Спектры РФС, полученные для исходной и облученной ионами Ar^+ поверхностей монокристалла $TlPb_2Br_5$, представлены на рис. 2. Видно, что все спектральные особенности для

чистой поверхности, за исключением O1s- и C1s-линий, относятся к составным элементам соединения $TlPb_2Br_5$.

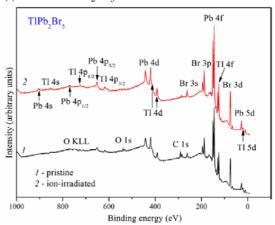


Рис. 2 Спектры РФС для исходной (1) и облученной ионами ${\rm Ar}^+$ (2) поверхностей монокристалла ${\rm TlPb}_2{\rm Br}_5$

РФС-данные свидетельствуют о том, что нет активного химического взаимодействия поверхности монокристаллов Tl_3PbBr_5 и $TlPb_2Br_5$ с кислородом. Данные результаты указывают на низкую гигроскопичность соединений Tl_3PbBr_5 и $TlPb_2Br_5$. Нами выполнены также расчеты электронной структуры соединений Tl_3PbBr_5 и $TlPb_2Br_5$ по методу присоединенных плоских волн–полного потенциала. Результаты расчетов свидетельствуют о том, что Tl_3PbBr_5 и $TlPb_2Br_5$ — непрямозонные полупроводники с шириной запрещенной зоны 3,05 и 2,92 эВ, соответственно.