THE EFFECT OF HEATING RATE DURING THE PRESSURE SINTERING OF B₄C–SIC POWDER MIXTURE ON THE STRUCTURE AND PROPERTIES OF SINTERED COMPOSITE

Kovalchenko M. S., <u>Tkachenko Y. G.</u>, Britun V. F., Yurchenko D. Z.

Frantsevich Institute for Problems of Materials Science, NAS of Ukraine Krzhizhanovskogo str., 3, Kyiv-142, 03680, Ukraine, e-mail: mskoval@ipms.kiev.ua

The study of the effect of heating rate during the pressure sintering powder mixture B4C-20 % SiC in the mode of non-isothermal heating on the structure and some properties of the sintered composite is carried out. The initial components of the mixture were B₄C powder of Donetsk chemicals plant production and refined SiC powder with an average grain size of 1 µm for the main fraction. A powder mixture after the mixing in a planetary mill were sintered at temperature higher than 900 °C under a pressure of 30 MPa in a nonisothermal heating mode with rates in the range from 30 to 85 °C/ minutes. The structure, microhardness HM at a load of 2 N and fracture toughness K_{Ic} at a load of 5 N for the sintered samples were studied.

Table 1 shows structural characteristics of the sample depending on the heating rate during the pressure sintering of them.

			Table 1
Heating	Volume	Fraction	Smooth
rate,	fraction	of SiC	segment size
°C/мин	of B ₄ C	in	of the fracture,
	without	cluster,	μm
	SiC	%	
30	Up to 15	60	3-10
50	The same	60	<3
70	30	70	10
85	Up to 70	90	15

With the elevation of heating rate during the pressure sintering of B_4C-20 % SiC powder mixtures the heterogeneity in the distribution of structural components as well as the proportion of transcrystalline fracture of samples are increased.

Table 2 shows micro-hardness and fracture toughness $K_{\rm Ic}$ of the samples depending on the heating rate during their pressure sintering.

		Table 2
Heating rate,	<i>HM</i> , GPa	$K_{\rm Ic}$, MPa·m ^{1/2}
°C/minutes		
30	40.0	4.74
50	43.7	4.51
70	43.9	4.30
85	44.7	4.16

The figure shows the samples structure sintered at different heating rates.

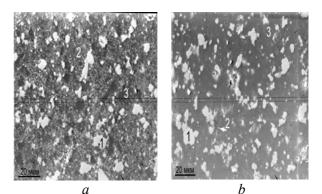


Fig. Structure of B4C–20% SiC samples, sintered at a heating rate of 30 (a) and 85 °C/minutes (b)

The specific structural state of composites correlates with the obtained values of the microhardness and fracture toughness of B_4C-20 % SiC samples, depending on the heating rate during the pressure sintering of powder mixtures. A maximum heterogeneity of the distribution of the structural components corresponds to the highest heating rate consisting of 85 °C/minutes in carried out study.

The data obtained enable to optimize the process parameters of pressure sintering boron-carbide-based ceramics.