STUDY OF TITANIUM AND OXYGEN IONS CHARGE IN SOME FERROELEKTRICS AND SIMILAR TO THEM OBJECTS

Bondarenko T.N., Ilkiv B.I.

Frantsevich Institute for Problems of Materials Science of NASU, 3 Krzhyzhanivsky Str., 03680 Kyiv, Ukraine; e-mail: b ilkiv@ukr.net

The objects of study were isostructural substances $ATiO_3$ (A = Ca, Sr, Ba, Cd, Pb) and oxide TiO_2 , used in their synthesis. BaTiO_3 and PbTiO_3 are the ferroelectrics. SrTiO_3 is virtual ferroelectric. Ferroelectrics are widely used in different regions of electro- and radiotechniques. Therefore, the study of electronic structure and chemical bond features in these substances is important.

In this work by X-ray photoelectron spectroscopy were received data on the binding energy of the core levels of titanium and oxygen $ATiO_3$ and TiO_2 . The spectra were obtained by HP5950 spectrometer.

Measurements show that the increase in the atomic number of the first component in $ATiO_3$ rather weakly affects the position of titanium and oxygen levels in these substances. At the same time the positions of these levels in the oxide TiO_2 differs from that of $ATiO_3$. The direction of chemical shift of these levels indicates that the Ti-O bond in $ATiO_3$ has more covalent character than in TiO_2 .

The TiL α - and OK α -X-ray were also obtained for all studied substances. TiL α - spectra characterized the Tids- electrons distribution in a valence band. OK α -spectra characterized, respectively, O2p- electrons distribution. OK α spectra in ATiO₃ substances and TiO₂ are presented at the figure.

The energy position of the TiL α - and OK α spectra maxima slightly varies with the atomic number of the first component in ATiO₃. The direction and value of these maximums shift in ATiO₃ relatively TiO₂ indicates some increase in the degree of covalence of Ti-O bond in ATiO₃.

The results are interpreted on the basis of the analysis of the crystal structure of substances.

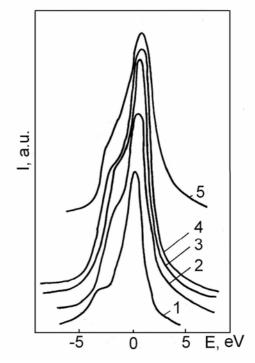


Fig. $OK\alpha$ - spectra for substances of ATiO₃ and TiO₂: 1 - TiO₂, 2 - CaTiO₃, 3 - BaTiO₃, 4 - SrTiO₃, 5 - PbTiO₃. Energy of the TiO₂ band maximum is taken as zero

Conclusions:

1. The titanium and oxygen ions charge differs slightly when A-component in $ATiO_3$ (A = Ca, Sr, Ba, Cd, Pb) differs.

2. Degree of covalence of the Ti-O bond in $ATiO_3$ more than in TiO_2 . These results are supported by studies of these compounds by the X-ray photoelectron spectroscopy and X-ray spectroscopy methods.