EFFECT OF TITANIUM ADDITIONS TO LaB₆- ZrB₂ SYSTEM ON PHASE INTERFACE ENERGY

Filipov V.

Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, 03142 Kiev, Krzhyzhanovsky st. 3, e-mail: filipov54@gmail.com

Lanthanum hexaboride is a widely used thermoemissive material. In our earlier investigations of LaB_6 - $(Ti_x, Zr_{1-x})B_2$ system it has been established that the volume content of diboride in the eutectic, are strongly dependant on as well as the regularity of fiber distribution, Ti/Zr ratio [1]. Investigations of these alloys by means of HRTEM enabled us to study the evolution of fiber cross-section shape in detail. Also, the complete absence of mutual solubility between MeB₆ and MeB₂ has been confirmed (Fig.1) [2].

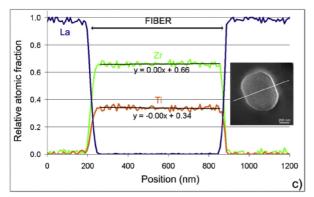


Fig. 1 Element distribution inside the matrix phase and inside a fiber of the $LaB_6-(Ti_{0,32},Zr_{0,68})B_2$ composition (alloy)

Formation of flat areas on the cross-section of the reinforcing fibers and mutual reversal of matrix phase and fiber lattices after partial of zirconium atoms for titanium ones in the diboride substitution of [2] provide reasons to suppose some changes in phase interface energy.

The latter was confirmed during the study of titanium additions on fracture toughness (Fig. 2) [3].

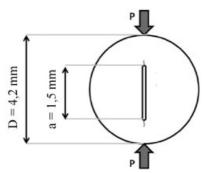


Fig. 2 Loading scheme and sample parameters for fracture toughness measurements

Accordingly, it is possible to conclude that the interaction on the matrix phase – fiber interface in LaB₆-(Ti_x,Zr_{1-x})B₂ system both during crystallization and during the material fracture is strongly dependant on the presence and quantity of titanium atoms in this system.

1. Paderno Yu. A new class of 'in-situ' fiber reinforced boride composite ceramic materials. In: Haddad YM, editor. Advanced multilayered and fiber-reinforced composites. The Netherlands: Kluwer Academic Publishers; 1998. p. 353–69.

2. Effect of Zr substitution by Ti on growth direction and interface structure of LaB_6 -Ti_xZr_{1-x}B₂ directionally solidified eutectics, I. Jouanny, M. Sennour, M.H. Berger at all, Journal of European Ceramic Society, 2014 v.34, ish 11, p. 2101-2109.

3. Halyna Volkova, Vladimir Filipov, Yurij Podrezov, The influence of Ti addition on fracture toughness and failure of directionally solidified LaB_6 -ZrB₂ eutectic composite with monocrystalline matrix, Journal of European Ceramic Society, 2014 in print