INTERACTION OF CERIA WITH REAR EARTH OXIDES

Andrievskaya E.R.⁽¹⁾, Kornienko O.A., Sameljuk A.V., Chudinovich O.V., Yurchenko Yu.V.

Frantsevich Institute for Problems of Materials Science of NASU,

3 Krzhyzhanovsky Str., Kiev, 03680, Ukraine, E-mail: er.andrievskaya@gmail.com,

⁽¹⁾National Technical University of Ukraine "Kiev Polytechnic Institute",

Pobedy avenue 37, building 21, Kiev, 03056, Ukraine

Study of phase equilibria in the series of the systems $CeO_2-Ln_2O_3$ (Ln = La, Sm, Eu, Gd, Er, Dy, Yb) is considered essentially important to create new materials based on rare-earth oxides (REO). The solid solutions based on CeO₂ demonstrate high ionic conductivity, 4-5 times higher than the conductivity of yttria-stabilized ZrO₂, low activation energy for total conductivity, high catalytic activity of methane oxidation at temperatures lower than 800 °C. Applications of ceria in electrolites and anodes are perspective in solid oxide solid cells and other electrochemical devises. The weakness of all known solid solutions based on CeO₂ (rather narrow homogeneity field and low mechanical strength for electrolites) one can overcome by means of complex dopping of CeO₂ with REO.

In the present work, phase equilibria and physicochemical poperties of the phases formed in the binary systems CeO_2 - Ln_2O_3 have been studied first at temperatures of 1500 and 1100 °C in air and in the whole concentration range.

In the system CeO₂-La₂O₃, two types of solid solutions have been revealed at 1500 and 1100 °C: cubic of fluorite type F-CeO₂ and hexagonal A-modification of lanthana, which are separated by two phase field (A+F). It has been found that the solubility of La₂O₃ in Fmodification of CeO₂ achieves 49 mol. % at 1500, 1100 °C. The lattice parameter increases from a=0.5409 nm in pure CeO₂ to a=0.5590 nm (at 1500 °C) and a=0.5587 nm (at 1100 °C) in the sample containing 50 mol. % La₂O₃. The solubility of CeO₂ in hexagonal Amodification of lanthana achieves 25 mol. % CeO₂ at 1500 °C and ~ 15 mol. % CeO₂ at 1100 °C.

In the CeO₂-Sm₂O₃ system, three types of solid solutions are formed: cubic structures F-CeO₂ and C-Sm₂O₃, monoclinic modification B-Sm₂O₃, which are separated by two phase fields (F+C) and (C+B). The solubility of Sm₂O₃ in F-CeO₂ achieves 25 mol. % at 1500 °C. The lattice parameter has been found increased from a=0.5409 nm in pure CeO₂ to a=0.5446 nm in the sample, containing 30 mol. % Sm₂O₃. The solubility of CeO₂ and B-Sm₂O₃ is at the level of 3 mol. % CeO₂ at1500 °C and the lattice parameters of B solid solutions vary

from a=1.3925, e=0.3632, c=0.8680 nm, $\gamma=90.42$ in pure Sm₂O₃ to a=1.3018, e=0.3578, c=0.9437 nm, $\gamma=88.5$ in boundary solid solution, respectively. The lattice parameters of C phase vary from a=1.0904 nm in the composition 60 mol. % CeO₂-40 mol. % Sm₂O₃ to a=1.0912 nm in the solid solution composed of 30 mol. % CeO₂-70 mol. % Sm₂O₃. When temperature decressed to 1100 °C, the homogeneity field of the F-CeO₂ and B-Sm₂O₃ solid solutions narrowed.

In the system CeO₂-Gd₂O₃, the solubility of Gd₂O₃ in F-CeO₂ achieves 15 mol. %. The lattice parameter increases from a=0.5409 nm in pure CeO₂ to a=0.5420nm in the sample containing 15 mol. % Gd₂O₃. The solubility of CeO₂ in B-Gd₂O₃ is not higher than 2 mol. % CeO₂ at 1500 °C. The lattice parameters of B phase vary from a=1.4061, e=0.3566, c=0.8760 nm, $\gamma=100.1$ for pure Gd₂O₃ to a=1.4380, e=0.3572, c=0.8783 nm, $\gamma=86.9$ for boundary solid solution. The lattice parameters of Cphase vary from a=1.0783 nm in the composition 15 mol. % CeO₂-85 mol. % Gd₂O₃ to a=1.0804 nm in the solid solution containing 35 mol. % CeO₂ and 65 mol. % Gd₂O₃.

The system CeO₂-Er₂O₃ may be specified by two types of solid solutions at 1500 and 1100 °C: F-CeO₂ and C-Er₂O₃, which are commonly separated by the twophase field (C+F). The solubility of Er₂O₃ in F-CeO₂ achieves 30 mol. % at 1500 °C and 25 mol. % at1100 °C. The lattice parameters decrease from a=0.5409 nm in pure CeO₂ to a=0.5369 nm at 1500 °C and a=0.5376 nm at 1100 °C in boundary solid solutions. The solubility of CeO₂ in cubic C-Er₂O₃ was found at the level of 45 mol. % CeO₂ at 1500 °C and ~5 mol. % CeO₂ at 1100 °C. The lattice parameter vary from a = 1,0531 nm in pure Er₂O₃ to a=1.0639 nm at 1500 °C and a = 1,0543nm at 1100 °C in boundary solid solution.

The boundary solubility of lanthanide oxides in ceria has been revealed to decrease with ion radius of Ln^{3+} decrease.

Authors thank STCU for funding by the Grant P 513.