INITIATION OF PLASTICITY IN NANOSCALE DEFORMATION OF ScB₂ AND LaB₆ SINGLE CRYSTALS

Dub S.N., Loboda P.I.⁽¹⁾, Kislaya G.P.⁽¹⁾

Institute for Superhard Materials of NAS, Kiev-74, 2 Avtozavodskaya str.,

Lz@ism.kiev.ua

⁽¹⁾Kiev Polytechnic Institute, Kiev-56, av. Pobedy 37, building 9,

PetrLoboda@yandex.ru, Kiparis-gpk@ukr.net

⁽²⁾NSC Kharkov Institute of Physics and Technology, Kharkov-108, 1 Academicheskaya str., <u>Tolmachovagn@kipt.kharkov.ua</u>

Nanoscale mechanical behaviour of ScB₂ and LaB₆ single crystals in directionally solidified eutectic composite LaB₆–ScB₂ have been studied by nanoindentation. Sharp elastic-plastic transition (*pop-in*) caused by homogeneous dislocation nucleation in previously dislocation-free volume under the contact (Fig.1) was observed for both phases. It allows for us to make experimental

estimation of theoretical shear strength (limit of elastic stability) of ScB₂ and LaB₆ single crystals. Experimental estimates ($\approx G/9$) are in good agreement with theoretical estimates ($G/2\pi$). This suggests that theoretical shear stress of hard and brittle borides can be observed directly using nanoindentation.

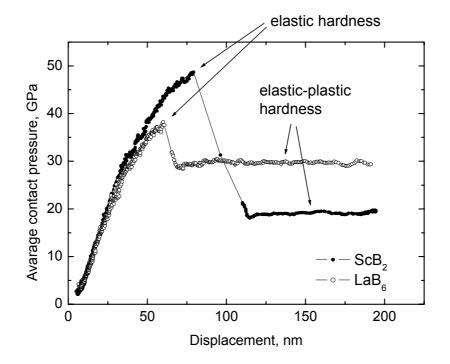


Fig. 1 Average contact pressure vs. displacement in ScB_2 and LaB_6 single crystals. Sharp elastic-plastic transition in the contact is caused by homogeneous dislocation nucleation in previously dislocation-free volume under indent at shear stress close to theoretical shear stress