X-RAY PHOTOELECTRON SPECTROSCOPY STUDY OF THE ELECTRONIC STRUCTURE OF TL₃PBBR₅ AND TLPB₂BR₅ SINGLE CRYSTALS

N.M. Denysyuk, V.L. Bekenev, O.V. Parasyuk⁽¹⁾, S.P. Danylchuk⁽²⁾, A.O. Fedorchuk⁽³⁾, <u>O.Y. Khyzhun</u>

Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, Kiev 03142, Ukraine

⁽¹⁾Department of Inorganic and Physical Chemistry, Eastern European National University, 13 Voli Ave., Lutsk 43025, Ukraine

⁽²⁾Department of Physics, Eastern European National University,13 Voli Ave., Lutsk,

Ukraine

⁽³⁾Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St., 50, 79010 Lviv, Ukraine

Thallium dilead pentabromide, TlPb₂Br₅, and trithallium lead pentabromide, Tl₃PbBr₅, stand among bromides as promising host materials, in particular for their application to eye-safe solidstate lasers and optical communications. The existence of Tl₃PbBr₅ and TlPb₂Br₅ compounds was first detected when studying the pseudo-binary TlBr-PbBr₂ system. The TlPb₂Br₅ compound crystallizes in the monoclinic structure, space group P2₁/c, with the lattice parameters a=9.304(4)Å, b=8.336(3)Å, and c=13.004(5)Å, while Tl₃PbBr₅ is orthorhombic (the space group P2₁2₁2₁, with the lattice parameters a = 15.397 Å, b = 9.061 Å, and c = 8.537 Å).

In the present work, Tl_3PbBr_5 and $TlPb_2Br_5$ single crystals have been successfully grown by the Bridgman-Stockbarger method. As an example, Fig. 1 presents a photo image of a piece of the asgrown $TlPb_2Br_5$ single crystal.

Fig. 1 Photo of a piece of the $TlPb_2Br_5$ single crystal used in the present experimental studies

Survey XPS spectra of pristine and Ar^+ -ion irradiated surfaces of the TlPb₂Br₅ single crystal are presented in Fig. 2. It is obvious that all the spectral features, except the C and O 1s levels and

Auger KLL spectra for pristine surface, are attributed to the constituent element core-levels and Auger lines.

Fig. 2 Survey XPS spectra recorded for (1) pristine and (2) Ar^+ ion-bombarded surface of the TlPb₂Br₅ single crystal

Furthermore, as can be seen from Fig. 2, the present survey XPS data indicate that there is no active chemical interaction with oxygen when the $TlPb_2Br_5$ single crystal surface contact with air for a comparatively long time (several weeks). The survey XPS spectra presented in Fig. 2 display that the O 1s line is rather weak on the pristine surface studied and no trace of the O 1s signal is detected after the Ar^+ ion-bombardment of the surface of the TlPb₂Br₅ single crystal. Our results indicate the low hygroscopicity of TlPb₂Br₅, the property that is very important for handling this material as an efficient laser source operating in ambient conditions.

We have also made ab initio band-structure calculations of Tl₃PbBr₅ and TlPb₂Br₅ adopting the full potential linearized augmented plane wave method. The calculations reveal that the Tl₃PbBr₅ and TlPb₂Br₅ compounds are indirect-gap materials with band gaps of 3.05 and 2.92 eV, respectively.